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The Analysis and Pooling Phases 
of Multiple Imputation

8.1 CHAPTER OVERVIEW

A multiple imputation analysis consists of three distinct steps: the imputation phase, the 
analysis phase, and the pooling phase. Chapter 7 described the mechanics of the imputation 
phase, and the purpose of this chapter is to outline the analysis and pooling phases. The 
purpose of the analysis phase is to analyze the fi lled-in data sets from the preceding imputa-
tion phase. This step consists of m statistical analyses, one for each imputed data set. The 
analysis phase yields several sets of parameter estimates and standard errors, so the goal of 
the pooling phase is to combine everything into a single set of results. Rubin (1987) outlined 
relatively straightforward formulas for pooling parameter estimates and standard errors. For 
example, the pooled parameter estimate is simply the arithmetic average of the estimates 
from the analysis phase. Combining the standard errors is slightly more complex but fol-
lows the same logic. The analysis phase is probably the easiest aspect of multiple imputation 
and requires very little explanation. Consequently, the majority of this chapter is devoted to 
the pooling phase, including the various signifi cance testing procedures that are available at 
this step.

As an advance warning, this chapter is relatively dense with equations, largely due to the 
complexity of the multiple imputation signifi cance tests. Not all of these formulas are equally 
important. For example, understanding Rubin’s (1987) equations for combining parameter 
estimates and standard errors is probably far more important than trying to digest the differ-
ent test statistics and their degrees of freedom. Software packages implement the majority of 
the signifi cance testing procedures that I outline in this chapter, so there is usually no need 
to compute the formulas by hand. Nevertheless, I felt that it was important for this chapter 
to serve as a comprehensive reference, so I included more equations than usual. The abun-
dance of equations should not hinder readers who are interested primarily in applying mul-
tiple imputation to their own research because the majority of the text does not require an 
in-depth understanding of the formulas.
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I use the small data set in Table 8.1 to illustrate ideas throughout this chapter. I designed 
these data to mimic an employee selection scenario in which prospective employees com-
plete an IQ test and a psychological well-being questionnaire during their interview. The 
company subsequently hires the applicants that score in the upper half of the IQ distribu-
tion, and a supervisor rates their job performance following a 6-month probationary period. 
Note that the job performance scores are missing at random (MAR) because they are system-
atically missing as a function of IQ (i.e., individuals in the lower half of the IQ distribution 
were never hired, and thus have no performance rating). In addition, I randomly deleted 
three of the well-being scores in order to mimic a situation where the applicant’s well-being 
questionnaire is inadvertently lost.

8.2 THE ANALYSIS PHASE

The analysis phase is probably the easiest aspect of a multiple imputation analysis. The impu-
tation phase generates m imputed data sets, each of which contains different estimates of the 
missing values. The purpose of the analysis phase, as noted earlier, is to analyze the fi lled-in 
data sets. This step consists of m statistical analyses, one for each imputed data set. For ex-
ample, suppose that a researcher had previously generated 20 imputations and is now inter-
ested in estimating a multiple regression equation. In the analysis phase, she would simply 
repeat the regression analysis 20 times, once for each data set. The researcher can employ the 

TABLE 8.1. Employee Selection Data Set

 Psychological Job
IQ well-being performance

 78 13 —
 84  9 —
 84 10 —
 85 10 —
 87 — —
 91  3 —
 92 12 —
 94  3 —
 94 13 —
 96 — —
 99  6  7
105 12 10
105 14 11
106 10 15
108 — 10
112 10 10
113 14 12
115 14 14
118 12 16
134 11 12
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same analysis procedures and the same software package that she would have used had the 
data been complete. Of course, repeating the analysis 20 times sounds incredibly tedious, but 
an increasing number of software packages have built-in routines that automate this process.

As an important aside, auxiliary variables play no role in the analysis phase. Multiple 
imputation can readily accommodate auxiliary variables, but this is handled in the imputa-
tion phase. The imputation process infuses the imputed values with the information from 
the auxiliary variables, so there is no need to include the additional variables in the subse-
quent analysis step. This is in contrast to maximum likelihood estimation, which uses the 
somewhat awkward saturated correlates approach to incorporate auxiliary variables. Although 
multiple imputation is arguably more diffi cult to implement, it holds a clear advantage over 
maximum likelihood when it comes to dealing with auxiliary variables.

8.3 COMBINING PARAMETER ESTIMATES IN THE POOLING PHASE

The analysis phase yields m different estimates of each parameter, any one of which is un-
biased if the data are MAR. Rather than rely on the results from any single data set, a mul-
tiple imputation analysis pools the m parameter values into a single point estimate. Rubin 
(1987) defi ned the multiple imputation point estimate as the arithmetic average of the m 
estimates

 1 θ̄ = — ∑
m

t=1
θ̂t (8.1) m

where θ̂t is the parameter estimate from data set t and θ̄ is the pooled estimate. Notice that 
Equation 8.1 is the usual formula for the sample mean, where the parameter estimates serve 
as data points. Although Rubin (1987) developed multiple imputation in the Bayesian frame-
work, the pooled point estimate is meaningful from either a Bayesian or a frequentist per-
spective. From the frequentist standpoint, θ̄ is a point estimate of the fi xed population pa-
rameter, whereas the Bayesian paradigm views θ̄ as the mean of the observed-data posterior 
distribution (Little & Rubin, 2002, pp. 210–211; Rubin, 1987).

A Bivariate Analysis Example

To illustrate the pooling process, suppose that it is of interest to use the data in Table 8.1 to 
estimate the regression of job performance on IQ. After generating 20 imputed data sets, I fi t 
an ordinary least squares regression model to each data set and saved the estimates and the 
standard errors to a fi le for further analysis. Table 8.2 shows the regression slopes from the 
analysis phase. As seen in the table, the regression coeffi cients ranged between –0.025 and 
0.239. Substituting the 20 estimates into Equation 8.1 yields a pooled point estimate of θ̄ = 
0.105. The fact that the pooled estimate is an average of 20 different values has no bearing 
on its interpretation. Consistent with a complete-data regression analysis, 0.105 is the ex-
pected change in job performance for a one-point increase in IQ.
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8.4 TRANSFORMING PARAMETER ESTIMATES 
PRIOR TO COMBINING

The pooling formula in Equation 8.1 assumes that the parameter estimates are asymptoti-
cally (i.e., in very large samples) normally distributed. However, some parameters meet this 
requirement better than others do, particularly in small and moderate samples. For example, 
the sampling distribution of Pearson’s correlation is normal when the population correlation 
equals zero but becomes increasingly skewed as ρ approaches plus or minus one. Many com-
mon variance estimates (e.g., R2 statistics, standard deviations, estimates of variances, and 
covariances) also have skewed sampling distributions (or from the Bayesian framework, 
skewed posterior distributions). These distributions eventually normalize as the sample size 
gets very large, but they can be markedly non-normal in small and moderate samples. Averag-
ing m parameter values into a single estimate is asymptotically valid for any parameter, but 
applying normalizing transformations prior to the pooling phase may improve the accuracy 
of certain estimates (Schafer, 1997).

To illustrate the use of normalizing transformations, consider Pearson’s correlation co-
effi cient. Fisher’s (1915) z transformation is a natural choice for pooling correlations because 
it places the estimates on a metric that more closely approximates a normal distribution. The 
transformation is

 1 rt + 1
 zt = — log(—–—) (8.2)
 2 rt – 1

TABLE 8.2. Regression Coeffi cients and Sampling 
Variances from the Bivariate Analysis Example

Imputation θ̂t SEt SE2
t

 1 0.12630 0.03639 0.00132
 2 0.09499 0.04978 0.00248
 3 0.05515 0.08348 0.00697
 4 0.06942 0.03509 0.00123
 5 0.16699 0.03901 0.00152
 6 0.02960 0.06283 0.00395
 7 0.20581 0.04523 0.00205
 8 0.02627 0.03739 0.00140
 9 0.05293 0.03456 0.00119
10 0.15939 0.05294 0.00280
11 0.18642 0.03604 0.00130
12 0.14726 0.03933 0.00155
13 0.23944 0.03601 0.00130
14 0.04638 0.04718 0.00223
15 0.10295 0.05341 0.00285
16 0.07162 0.04275 0.00183
17 0.20742 0.03783 0.00143
18 –0.02501 0.04752 0.00226
19 0.09447 0.03839 0.00147
20 0.04705 0.04372 0.00191
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where rt is the correlation coeffi cient from data set t and zt is the corresponding transformed 
coeffi cient. Substituting the transformed correlations into Equation 8.1 expresses the average 
correlation on the z score metric, and the equation below transforms the pooled estimate 
back to the correlation metric.

 e2θ̄ – 1 r̄  = (———) (8.3)
 e2θ̄ + 1

Applying normalizing transformations to variances and covariances is more complex 
because the appropriate transformation may not be immediately obvious. For example, a 
logarithmic transformation may work best for a distribution with substantial positive skew-
ness, whereas a square root transformation may be more appropriate for a moderately skewed 
distribution. When transforming raw data, methodologists often recommend experimenting 
with different transformations to identify the one that best normalizes the data, but this ex-
ploratory approach is unlikely to work well in the pooling phase. Given the potential diffi cul-
ties associated with specifying an appropriate transformation, it is reasonable to ask whether 
the use of transformations makes any practical difference. Because parameter distributions 
tend to normalize as N increases, it is also important to determine whether there is a sample 
size at which transformations are no longer necessary. I am unaware of any studies that have 
systematically evaluated the use of transformations at the pooling phase, so I performed some 
computer simulations to examine this issue.

Briefl y, the computer simulations generated 1,000 samples of bivariate normal data 
from a population with a correlation of ρ = .50. I subsequently imposed missing completely 
at random (MCAR) data by randomly deleting 25% of the values from one of the variables. 
Because the sample size plays an important role, I examined six different sample size condi-
tions (N = 50, 100, 200, 300, 500, and 1,000). Finally, I created m = 10 imputations for each 
sample and applied logarithmic and square root transformations prior to pooling variances, 
covariances, and R2 statistics. Although my simulations were very limited in scope, they do 
suggest that normalizing transformations tend to make very little difference, particularly when 
the sample size exceeds N = 200. Averaging the transformed estimates did reduce bias, but 
the mean squared errors of the transformed estimates were virtually identical to those of the 
raw estimates (the mean squared error is an overall measure of accuracy that combines bias 
and sampling error). The mean squared error results are interesting because they suggest that 
normalizing transformations increase sampling error to a degree that effectively negates the 
reduction in bias. Consequently, there may be little or no practical advantage to transforming 
estimates prior to combining them. (Fisher’s transformation is a notable exception because 
it provides a convenient mechanism for signifi cance testing.) As a caveat, my simulations 
were very limited in scope, so it is a good idea to view the results with some caution. Further 
methodological research should attempt to clarify this issue.

8.5 POOLING STANDARD ERRORS

The analysis phase also yields m estimates of each standard error. Pooling standard errors is 
not as simple as computing an arithmetic average, but Rubin’s (1987) combining rules are 
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still relatively straightforward. Multiple imputation standard errors combine two sources of 
sampling fl uctuation: the sampling error that would have resulted had the data been com-
plete, and the additional sampling error that results from missing data. As an aside, Rubin’s 
pooling formulas operate on the sampling variance metric rather than on the standard error 
metric. However, the sampling variance is simply the squared standard error, so switching 
to the standard error metric is an easy conversion.

Within-Imputation Variance

A multiple imputation standard error consists of two sources of sampling fl uctuation: within-
imputation variance and between-imputation variance. The within-imputation variance is 
the arithmetic average of the m sampling variances

 1 VW = — ∑
m

t=1
SEt

2 (8.4) m

where VW denotes the within-imputation variance, and SEt
2 is the squared standard error 

(i.e., sampling variance) from data set t. Notice that Equation 8.4 is the usual formula for 
the sample mean, where the sampling variances serve as data points. Equation 8.4 averages 
complete-data sampling variances, so the within-imputation variance effectively estimates 
the sampling variability that would have resulted had there been no missing data.

Between-Imputation Variance

At an intuitive level, missing values should increase standard errors because they add an 
additional layer of noise to the parameter estimates. Single imputation techniques fail to ad-
dress this issue because they treat the fi lled-in values as real data. Consequently, even the 
best single imputation technique (e.g., stochastic regression imputation) will underestimate 
standard errors. Analyzing multiply imputed data sets solves this problem because it pro-
vides a mechanism for estimating the additional source of sampling error. As an illustration, 
reconsider the regression coeffi cients in Table 8.2. The variation in the regression coeffi cients 
from one data set to the next (the estimates range between –0.025 and 0.239) is solely due 
to the use of different imputed values. Consequently, the variability of the parameter values 
across the m data sets estimates the additional sampling fl uctuation that results from the 
missing data.

More formally, the between-imputation variance quantifi es the variability of a parame-
ter estimate across the m data sets, as follows:

 1 VB = ——– ∑
m

t=1
(θ̂t – θ̄)2 (8.5) m – 1

where VB denotes the between-imputation variance, θ̂t is the parameter estimate from data 
set t, and θ̄ is the average point estimate from Equation 8.1. Notice that Equation 8.5 is the 
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usual formula for the sample variance, where the parameter estimates serve as data points. 
Again, the between-imputation variance represents the additional sampling error that results 
from the missing data because the fl uctuation of the θ̂t values from one data set to the next 
is solely due to the use of different imputed values.

Total Sampling Variance

Equations 8.4 and 8.5 decompose sampling error into two components: the sampling fl uc-
tuation that would have resulted had the data been complete (i.e., the within-imputation vari-
ance) and the additional sampling error that results from the missing data (i.e., the between-
imputation variance). The total sampling variance combines these two components into a 
single quantity, as follows:

 VB VT = VW + VB + —– (8.6)
 m

You might have anticipated that the total sampling variance is just the sum of the within- 
and between-imputation components, but the equation has an additional term, VB / m. The 
between-imputation variance in Equation 8.5 requires the average parameter estimate (i.e., θ̄), 
and this mean is also subject to sampling error. The right-most term in Equation 8.6 quan-
tifi es the sampling variance (i.e., squared standard error) of the mean and essentially serves as 
a correction factor for using a fi nite number of imputations. (As m goes to infi nity, this term 
vanishes and the total variance becomes the sum of VW and VB.)

Researchers are generally accustomed to reporting their results on the standard error 
metric rather than on the variance metric. Therefore, taking the square root of the total vari-
ance gives the multiple imputation standard error, as follows:

 SE = √�V� T (8.7)

Throughout this section, I have been referring to various quantities as sampling variances, 
which implies repeated sampling (i.e., a frequentist interpretation). However, the total vari-
ance is meaningful from either a Bayesian or a frequentist perspective. From a frequentist 
perspective, the total variance estimates the variability of a parameter estimate across re-
peated samples. In contrast, the Bayesian paradigm views VT as the variance of the observed-
data posterior distribution. The difference in terminology is not just semantics and represents 
an important philosophical difference between the two paradigms (see Chapter 6). Because 
the standard error is a familiar concept, I use this term throughout the remainder of the book 
(much of the multiple imputation literature follows the same convention).

An ANOVA Analogy

Partitioning a parameter’s sampling variance into within- and between-imputation compo-
nents is very similar to what happens in an analysis of variance (ANOVA). ANOVA partitions 
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score variation into two orthogonal sources: explained variability that is attributable to an 
explanatory variable (i.e., between-group variability) and residual variation that remains after 
accounting for the explanatory variable (i.e., within-group variability). The pooling phase 
partitions variance in a manner that closely resembles an ANOVA analysis, but it does so 
using the variation in a parameter distribution rather than a score distribution.

To align the previous concepts with an ANOVA analysis, you can think of missingness 
as an explanatory variable and the total sampling variance as the variability in the outcome 
variable. In this analogy, the between-imputation variance quantifi es the portion of the pa-
rameter’s variance that is due to the explanatory variable (i.e., the missing data) and is akin 
to the between-group mean square from an ANOVA analysis. The within-imputation variance 
is the residual variation that remains after subtracting out the explanatory variable’s infl u-
ence (i.e., the sampling variation that would result had there been no missing data) and is 
analogous to the mean square error in an ANOVA. Thinking about VW and VB in ANOVA 
terms puts Rubin’s (1987) combining rules in a familiar context, but it also leads to an intui-
tive interpretation of some important quantities that I defi ne later in the chapter.

A Bivariate Analysis Example

To illustrate the process of combining standard errors, reconsider the regression of job per-
formance on IQ. Table 8.2 also shows the standard errors and the sampling variances from 
the 20 regression analyses. Averaging the squared standard errors in the right-most column 
of the table yields a within-imputation variance of VW = 0.00215. Again, this is an estimate 
of the sampling variability that would have resulted had the data been complete. Next, using 
Equation 8.5 to compute the variance of the regression coeffi cients across the 20 imputations 
gives a between-imputation variance of VB = 0.00515. As I explained previously, the between-
imputation variance represents the additional uncertainty that results from the missing data. 
Finally, substituting VW and VB into Equation 8.6 yields the total variance, VT = 0.00756, and 
taking the square root of this value gives the multiple imputation standard error, SE = 0.087. 
Notice that the pooled standard error is considerably larger than most of the individual stan-
dard errors in Table 8.2. (The average complete-data standard error is 0.045.) This makes 
intuitive sense because multiple imputation explicitly incorporates the additional sampling 
error that accrues from the missing data.

8.6 THE FRACTION OF MISSING INFORMATION AND THE RELATIVE 
INCREASE IN VARIANCE

The within-imputation variance, between-imputation variance, and the total variance defi ne 
two useful diagnostic measures, the fraction of missing information and the relative increase 
in variance due to nonresponse. These measures are important because they (1) quantify 
the infl uence of missing data on the standard errors, (2) dictate the convergence speed of the 
data augmentation algorithm, and (3) help defi ne the signifi cance tests outlined later in the 
chapter.
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The Fraction of Missing Information

I briefl y introduced the fraction of missing information in Chapter 7, where I described it as 
a diagnostic measure that adjusts the missing data rate by the correlations among the vari-
ables. More specifi cally, the fraction of missing information quantifi es the missing data’s 
infl uence on the sampling variance of a parameter estimate. An intuitive expression for the 
fraction of missing information is as follows.

 VB + VB/m FMI = ——–—— (8.8)
 VT

Equation 8.8 assumes that the number of imputations is very large; thus, an alternate expres-
sion that adjusts for a fi nite number of imputations is

 VB + VB/m + 2/(ν + 3)
 FMI1 = ————————— (8.9)
 VT

where ν is a degrees of freedom value that is defi ned later in Equation 8.12. The value of ν 
increases to infi nity as m goes to infi nity, so the additional terms in the numerator essentially 
vanish with a very large number of imputations. The result is the more straightforward expres-
sion in Equation 8.8.

Focusing on Equation 8.8, the fraction of missing information has an intuitive interpre-
tation. The denominator is the total sampling variance (i.e., squared standard error), and the 
numerator quantifi es the additional sampling variation that accrues from the missing data. 
Consequently, the fraction of missing information is the proportion of the total sampling 
variance that is due to the missing data. If you think of between- and within-imputation vari-
ance as being similar to the between- and within-group variation from ANOVA, then the 
fraction of missing information is analogous to an R2 statistic. In the context of multiple im-
putation, the pooling phase partitions the variation in a parameter distribution rather than a 
score distribution, but the R2 analogy is useful for understanding the equation.

With regard to the previous regression example, substituting VB = 0.00515 and VT = 
0.00755 into Equation 8.8 yields FMI = 0.715. This value indicates that 71.5% of the regres-
sion coeffi cient’s sampling variance is attributable to the missing data. Using the more com-
plex expression in Equation 8.9 gives an estimate that is more appropriate for a fi nite number 
of imputations, but the interpretation remains the same (i.e., FMI1 = 0.729, so approximately 
73% of the sampling variance is due to the missing data). I previously described missing in-
formation as a summary measure that combines the missing data rate and the correlations 
among the variables. The missing information is typically lower than the missing data rate, 
particularly when the variables in the imputation model are predictive of the missing values. 
In this situation, the correlations among the variables mitigate the information loss, such that 
the increase in sampling error is not completely commensurate with the overall reduction in 
the sample size. The regression analysis produced a fraction of missing information that ex-
ceeds the missing data rate, but this is likely an artifact of the sample size and the number of 
imputations (accurate FMI estimates require far more than 20 data sets).
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The fraction of missing information is also a useful diagnostic tool because it infl uences 
the convergence of the data augmentation algorithm. (Parameters with high rates of missing 
information tend to converge slowly.) Consequently, paying especially close attention to pa-
rameters with large fractions of missing information is a good strategy when examining the 
graphical diagnostics from the imputation phase. Because some multiple imputation soft-
ware packages report the fraction of missing information as a by-product of the imputation 
phase, usually these estimates are readily available. As an aside, methodologists have noted 
that the fraction of missing information tends to be noisy and somewhat untrustworthy 
(Harel, 2007; Schafer, 1997), particularly with fewer than 100 imputations (Harel, 2007). 
However, estimating the fraction of missing information is usually not the primary analytic 
goal, so approximate estimates are often acceptable.

Relative Increase in Variance

Like the fraction of missing information, the relative increase in variance quantifi es the miss-
ing data’s infl uence on the sampling variance of a parameter estimate, but it does so in a 
slightly different fashion. A standard formulation of the relative increase in variance is

 VB + VB/m FMI
 RIV = ——–—— = —–—— (8.10)
 VW 1 – FMI

To understand the relative increase in variance, consider the meaning of its component parts. 
The denominator of Equation 8.10 estimates the sampling variance that would have resulted 
had there been no missing data, and the numerator of the equation quantifi es the additional 
sampling variation that accrues from the missing data. Consequently, the relative increase in 
variance gives proportional increase in the sampling variance that is due to the missing data. 
For example, if the missing data have no infl uence on the sampling error of a particular 
parameter, the between-imputation variance is zero, as is the relative increase in variance. In 
contrast, if the between-imputation variance is equal to the within-imputation variance, then 
the relative increase in variance equals one. Returning to the previous regression analysis, 
note that the between- and the within-imputation variance estimates are VB = 0.00515 and 
VW = 0.00215, respectively. Substituting these values into Equation 8.10 yields RIV = 2.51. 
This means that the sampling fl uctuation due to the missing data is two and a half times 
larger than the sampling variance of a complete-data analysis.

Like the fraction of missing information, the relative increase in variance dictates the 
convergence speed of the data augmentation algorithm. Equation 8.10 shows that FMI and 
RIV are one-to-one transformations, so it makes little difference which measure you choose 
to examine. Several of the signifi cance tests outlined in subsequent sections rely on the rela-
tive increase in variance (or equivalently, the fractional missing information), so these con-
cepts will resurface throughout the remainder of the chapter.
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8.7 WHEN IS MULTIPLE IMPUTATION COMPARABLE 
TO MAXIMUM LIKELIHOOD?

Having gained an understanding of all three phases in a multiple imputation analysis, it is 
useful to consider the comparability of maximum likelihood and multiple imputation. Maxi-
mum likelihood and multiple imputation are equivalent techniques in the sense that they 
both assume multivariate normality and MAR data. Despite making the same assumptions, 
the two approaches may or may not yield similar parameter estimates and standard errors. 
Assuming that the sample size and the number of imputations are both large enough to 
eliminate idiosyncratic performance differences, the set of input variables and the relative 
complexity of the imputation model and the analysis model largely determine whether the 
two procedures produce similar results (Collins, Schafer, & Kam, 2001; Schafer, 2003).

When comparing multiple imputation and maximum likelihood, the fi rst thing to con-
sider is whether the imputation phase uses the same set of variables as the analysis phase. To 
illustrate, consider an analysis model that involves three variables, X, M, and Y. A researcher 
could use maximum likelihood to directly estimate the analysis model, or she could impute 
the data and analyze the m complete data sets. If the imputation phase includes additional 
variables that are not part of maximum likelihood analysis (e.g., a set of auxiliary variables), 
then the two procedures can yield different estimates, standard errors, or both. If the imputa-
tion phase includes only X, M, and Y, then multiple imputation and maximum likelihood are 
seemingly on an equal footing because they make the same assumptions and use the same 
set of input variables. However, the comparability of the two procedures still depends on the 
relative complexity of the imputation and the analysis models.

Recall from Chapter 7 that the imputation phase of a multiple imputation analysis uses 
a multiple regression model to fi ll in the missing values. A multiple regression model is 
known as a saturated model because the number of parameters in the model exactly equals 
the number of elements in the mean vector and the covariance matrix (i.e., there is a one-to-
one transformation that links the regression model parameters to the elements in !̂ and "̂). 
In practical terms, this means that the imputation phase uses the most complex model pos-
sible to impute the missing values (i.e., estimating the regression model expends all of the 
information present in the mean vector and the covariance matrix). The subsequent analysis 
model may or may not be as complex as the imputation regression model, and the relative 
parsimony of these two models has a bearing on the comparability of multiple imputation 
and maximum likelihood.

To illustrate the parsimony issue, consider a mediation analysis in which X predicts M, 
M predicts Y, and X also has a direct infl uence on Y. The top panel of Figure 8.1 shows a path 
diagram of this model. To begin, notice that the mediation model is saturated because it, 
too, estimates every possible association among the variables. Assuming that the imputation 
phase includes only three variables, then a maximum likelihood analysis of the mediation 
model estimates the same number of parameters as the imputation phase (i.e., the number 
of parameters in the mediation model equals the number of elements in !̂ and "̂). When the 
imputation and analysis models use the same set of input variables and estimate the same 
number of parameters, the two models are said to be congenial (Meng, 1994). In this situa-
tion, multiple imputation and maximum likelihood should produce very similar estimates 
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and standard errors (Collins et al., 2001; Schafer, 2003). All things being equal, Bayesian es-
timation is asymptotically (i.e., in large samples) equivalent to maximum likelihood (Gelman, 
Carlin, Stern, & Rubin, 1995), so there is no theoretical reason for the procedures to produce 
different results.

Next, consider an analysis model that restricts the association between X and Y to zero 
during estimation, such that the relationship between X and Y is completely mediated by M. 
The bottom panel of Figure 8.1 shows a path diagram of this model. Unlike the previous 
example, the imputation and analysis models are now uncongenial because they differ in 
complexity. That is, the analysis model restricts the association between X and Y, whereas the 
imputation regression model does not. When the imputation and analysis models are un-
congenial but use the same set of input variables, multiple imputation and maximum likeli-
hood should produce very similar parameter estimates, but multiple imputation standard 
errors may be slightly larger (Collins et al., 2001; Schafer, 2003). In effect, the imputation 
phase uses an unnecessarily complex model to deal with the missing data, and this addi-
tional complexity can add a small amount of noise to the resulting estimates. However, the 
difference between the two sets of standard errors is usually trivial, so uncongeniality is not 
necessarily a reason to favor maximum likelihood estimation.

The previous example might suggest that uncongeniality is detrimental to a multiple 
imputation analysis. However, uncongeniality can be benefi cial when it results from an inclu-
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FIGURE 8.1. Path diagram of a mediation analysis model. The top panel shows a model where X 
has a direct relationship with Y and is also related to Y via a mediating variable, M. The bottom panel 
shows a model where X and Y are only related via their mutual association with M.
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sive analysis strategy that incorporates auxiliary variables that are correlates of missingness 
or correlates of the incomplete analysis model variables. Because a single set of imputations 
can serve as input data for a variety of different analyses, it is natural for the imputation phase 
to include a much larger set of variables than would appear in any single analysis model. 
Returning to the analysis models in Figure 8.1, note that an ideal imputation model would 
include the mediation model variables, variables from other analyses, and a set of auxiliary 
variables. When the imputation phase includes additional variables that are not part of the 
analysis model, multiple imputation and maximum likelihood can yield different parameter 
estimates, standard errors, or both. Idiosyncratic features of the data infl uence these discrep-
ancies, so it is diffi cult to make predictions about the pattern and the magnitude of the dif-
ferences (e.g., some estimates may be similar, others may be different; one procedure may 
produce smaller standard errors for some parameters but not others).

A fi nal situation in which multiple imputation and maximum likelihood can differ oc-
curs when the imputation model is more restrictive than the analysis model. Returning to the 
mediation example, suppose that it is of interest to determine whether the regression coeffi -
cient between X and M is different for males and females (e.g., using a multiple group path 
analysis model or a regression model with interaction terms). Furthermore, suppose that the 
imputation phase includes X, M, Y, and a gender dummy code. In this situation, including 
the dummy code in the imputation phase accounts for mean differences between males and 
females, but omitting the gender by X product term effectively assumes that the gender groups 
have the same covariance between X and M. This is a potentially harmful form of unconge-
niality because the subsequent analyses can attenuate the interaction effect. Maximum likeli-
hood estimation would not suffer from this problem, so it is possible for the two approaches 
to produce very different estimates and standard errors. This example underscores the well-
established but important point that omitting analysis variables from the imputation phase 
can produce biased parameter estimates, regardless of the missing data mechanism (Meng, 
1994; Rubin, 1996).

8.8 AN ILLUSTRATIVE COMPUTER SIMULATION STUDY

In Chapter 4, I illustrated the accuracy of maximum likelihood analyses using computer 
simulations. Having outlined the analysis and pooling phases, I repeated these simulations, 
this time using multiple imputation to deal with missing data. The simulation programs 
generated 1,000 samples of N = 250 from a population model that mimicked the IQ and job 
performance data in Table 8.1. The fi rst simulation created MCAR data by randomly deleting 
50% of the job performance ratings. The second simulation modeled MAR data and elimi-
nated job performance scores for the cases in the lower half of the IQ distribution. The fi nal 
simulation generated missing not at random (MNAR) data by deleting the job performance 
scores for the cases in the lower half of the job performance distribution. After generating each 
data set, I used the data augmentation algorithm from Chapter 7 to create m = 10 imputed 
data sets for each sample. Next, I estimated the mean vector and the covariance matrix from 
each imputed data set and used Equation 8.1 to pool the resulting estimates. Table 8.3 shows 
the average multiple-imputation estimates from the simulations and uses bold typeface to 
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highlight severely biased estimates. For comparison purposes, the table also shows the cor-
responding maximum likelihood estimates.

As seen in the table, the multiple imputation and maximum likelihood parameter esti-
mates are virtually indistinguishable in all three simulations, which is not surprising given 
that the imputation and analysis models are congenial (i.e., they include the same variables 
and estimate the same number of parameters). Consistent with maximum likelihood estima-
tion, multiple imputation produced unbiased estimates in the MCAR and MAR simulations 
but gave biased estimates in the MNAR simulation. However, it is important to point out that 
the MNAR bias was confi ned to the parameters that were affected by missing data. Although 
these simulations were limited in scope, the results are consistent with missing data theory 
(Rubin, 1976; Schafer, 1997) and with previous simulation studies (e.g., Allison, 2000; Col-
lins et al., 2001; Graham & Schafer, 1999; Newman, 2003).

8.9 SIGNIFICANCE TESTING USING THE t STATISTIC

The next few sections outline a number of multiple imputation signifi cance tests. Again, the 
subsequent sections are relatively dense with equations, but not all of these formulas are 

TABLE 8.3. Average Parameter Estimates from the 
Illustrative Computer Simulation

 Population Multiple Maximum
Parameter value imputation likelihood

MCAR simulation

µIQ 100.00 99.98 100.02
µJP 12.00 11.99 11.99
σ2

IQ 169.00 169.34 168.25
σ2

JP 9.00 9.08 8.96
σIQ,JP 19.50 19.51 19.48

MAR simulation

µIQ 100.00 100.00 100.01
µJP 12.00 12.00 12.01
σ2

IQ 169.00 168.46 168.50
σ2

JP 9.00 9.23 8.96
σIQ,JP 19.50 19.43 19.15

MNAR simulation

µIQ 100.00 100.02 100.00
µJP 12.00 14.13 14.12
σ2

IQ 169.00 170.37 169.11
σ2

JP 9.00 3.42 3.33
σIQ,JP 19.50 8.51 8.55
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equally important (e.g., the degrees of freedom equations are complex and not very intui-
tive). The abundance of equations should not hinder readers who are primarily interested in 
applying multiple imputation to their own research because the majority of the text does not 
require an in-depth understanding of the formulas.

In the context of a maximum likelihood analysis, the Wald z test provides a mechanism 
for assessing whether a parameter estimate is statistically different from some hypothesized 
value. Multiple imputation analyses use an analogous t statistic. Like the Wald test, the nu-
merator of the t statistic compares the point estimate to some hypothesized value, and the 
denominator contains the standard error, as follows:

 θ̄ – θ0 t = ——— (8.11)
 √�V� T

where θ̄ is the pooled point estimate, and θ0 is the hypothesized parameter value. Researchers 
typically test whether a parameter is signifi cantly different from zero, in which case the t sta-
tistic reduces to the ratio of the point estimate to its standard error.

Many complete-data statistical procedures employ a t statistic similar to that in Equa-
tion 8.11, but the multiple imputation test statistic uses a complex expression for the degrees 
of freedom (Rubin, 1987; Rubin & Schenker, 1986).

 VW 1
 ν = (m – 1)(1 + ———–—)2

 = (m – 1)(—–—) (8.12)
 VB + VB/m FMI2

With complete data, the t sampling distribution converges to a normal curve as the sample 
size becomes very large (i.e., the degrees of freedom approach infi nity). Interestingly, the 
sample size does not directly infl uence the value of ν. Instead, the degrees of freedom in-
crease as the number of imputations increase or as the fraction of missing information de-
creases. For example, substituting m = 20 and FMI = .25 (e.g., a 25% missing data rate) into 
Equation 8.12 yields ν = 304, whereas m = 20 and FMI = .05 gives a degrees of freedom value 
of ν = 7600.

In small to moderate samples, ν can substantially exceed the degrees of freedom that 
would have resulted had the data been complete. Returning to the previous regression ex-
ample, observe that the complete-data regression of job performance on IQ would have N – k 
– 1 = 18 degrees of freedom, where k is the number of predictor variables. In contrast, Equa-
tion 8.12 yields a value of ν = 37.148. To correct this problem, Barnard and Rubin (1999) 
proposed the following adjusted degrees of freedom value

 1 1 ν1 = (— + —)–1

 (8.13)
 ν ν̃

where

 dfcom + 1
 ν̃ = (1 – FMI)(————)dfcom (8.14)
 dfcom + 3
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and dfcom is the degrees of freedom that would have resulted had the data been complete. 
Unlike ν, the adjusted degrees of freedom value increases as the sample size increases and 
never exceeds the complete-data degrees of freedom. For example, the adjusted degrees of 
freedom for the previous regression example is ν1 = 4.124 as opposed to ν = 37.148. Barnard 
and Rubin’s (1999) computer simulations suggest that ν1 improves the accuracy of confi -
dence intervals in small samples, so you should use the adjusted degrees of freedom when-
ever possible.

Confi dence Intervals

Establishing a confi dence interval around a multiple imputation point estimate requires the 
appropriate critical values from a t distribution with ν1 degrees of freedom. To get the upper 
and lower confi dence interval limits, you multiply the standard error by the appropriate criti-
cal value and add the resulting product to the pooled point estimate, as follows:

 θ̄ + (tν1,1–α/2
)(√�V� T ) (8.15)

where tν1,1–α/2
 is the t critical value that separates the desired proportion of the distribution. 

For example, the 95% confi dence interval requires the t critical value that separates the upper 
and the lower 2.5% of a t sampling distribution with ν1 degrees of freedom. Multiple imputa-
tion software programs generally report confi dence intervals, but you can obtain the t critical 
values from other software programs (e.g., Excel), if need be.

A Bivariate Analysis Example

Returning to the previous bivariate analysis, note that the regression of job performance on 
IQ produced a slope estimate of θ̄ = 0.105 and a standard error of SE = 0.087. The test sta-
tistic for the regression coeffi cient is t = 1.207, and referencing the statistic to a t distribution 
with ν1 = 4.124 degrees of freedom returns a probability value of p = .29. With an alpha level 
of 0.05, the two-tailed critical value for a t distribution with 4.124 degrees of freedom is 
2.776, therefore, substituting the appropriate values into Equation 8.15 gives upper and lower 
confi dence limits of 0.347 and –0.137, respectively. Aside from using a fractional degrees of 
freedom value, the signifi cance testing procedure is virtually identical to that of a complete-
data analysis.

Revisiting the Number of Imputations

Recall from Chapter 7 that the number of imputations has an impact on the power of mul-
tiple imputation signifi cance tests, such that power improves as m increases. The equations 
in this section illustrate that increasing the number of imputations can improve power in two 
ways. First, reconsider the expression for the total sampling variance (i.e., squared standard 
error) in Equation 8.6. The formula includes a correction factor (i.e., VB / m) that quantifi es 
the sampling error of the pooled point estimate. Increasing the number of imputations de-
creases the value of the correction factor and thus decreases the standard error. Increasing 
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the number of imputations also improves power in a more subtle fashion. Equations 8.12 
and 8.13 show that the degrees of freedom value increases as the number of imputations in-
creases. As the degrees of freedom increase, the t critical value decreases, making it easier to 
reject the null hypothesis. Consequently, all things being equal, analyses with a large num-
ber of imputations will produce more powerful signifi cance tests than analyses with a small 
number of imputations. Computer simulation studies suggest that m = 20 is a good rule of 
thumb for many situations (Graham, Olchowski, & Gilreath, 2007), but increasing the num-
ber of imputations beyond this point is certainly a good idea, if processing time permits. 
Using a large number of imputations will also improve the performance of the multiple-
parameter signifi cance tests that are described next, although much less is known about the 
impact of m on these tests.

8.10 AN OVERVIEW OF MULTIPARAMETER SIGNIFICANCE TESTS

In many situations it is of interest to determine whether a set of parameters is signifi cantly 
different from zero. For example, in a multiple regression analysis, researchers are often in-
terested in testing whether two or more regression slopes are different from zero. In an ordi-
nary least squares analysis with complete data, it is standard practice to use an omnibus F 
test for this purpose. In the context of maximum likelihood estimation, the multivariate Wald 
test and the likelihood ratio statistic are analogous procedures. Multiple imputation also of-
fers different mechanisms for testing a set of parameter estimates (the literature sometimes 
refers to these procedures as multiparameter inference or multivariate inference), although 
relatively little is known about the performance of these tests.

The subsequent sections describe three different multiparameter signifi cance tests. Fol-
lowing Schafer (1997), I refer to these tests as D1, D2, and D3. The D1 statistic uses the pooled 
parameter estimates and the pooled sampling variances to construct a test that closely re-
sembles the multivariate Wald statistic from Chapter 3. In contrast, D2 and D3 pool signifi -
cance tests from the analysis phase; the D2 statistic pools Wald tests, and the D3 statistic 
pools likelihood ratio tests. Although these procedures accomplish the same task, they are 
not equally trustworthy, nor are they equally easy to implement. The D1 and D3 statistics are 
asymptotically equivalent, but D1 is easier to implement because it is readily available in 
multiple imputation software programs. (At the time of this writing, relatively few programs 
compute D3.) Computing D2 is straightforward, but it appears to be the least trustworthy of 
the three test statistics.

8.11 TESTING MULTIPLE PARAMETERS USING THE D1 STATISTIC

The D1 statistic uses the pooled parameter estimates and the pooled sampling variances to 
construct a test that closely resembles the multivariate Wald statistic. Recall from Chapter 3 
that the Wald test is

 ω = (#̂ – #0)T var(#̂)–1(#̂ – #0) (8.16)



234 APPLIED MISSING DATA ANALYSIS

where #̂ is a vector of parameter estimates, #0 is a vector of hypothesized values (typically 
zeros), and var(#̂) contains the appropriate elements from the parameter covariance matrix. 
In order to construct an analogous test for a multiple imputation analysis, it is fi rst necessary 
to extend Rubin’s (1987) pooling equations to multiple parameters and parameter covariance 
matrices.

Pooling Multiple Parameter Estimates

Because Rubin’s (1987) procedure for combining parameter estimates is unaffected by the 
shift to multiple parameters, the multiple imputation point estimate is still the arithmetic 
average of the m sets of estimates (see Equation 8.1). Constructing a test that resembles the 
Wald statistic requires matrix computations, so a column vector #t contains the set of esti-
mates from data set t, and the vector #̄ holds the pooled point estimates.

Pooling Parameter Covariance Matrices

The Wald test in Equation 8.16 uses elements from the parameter covariance matrix to stan-
dardize the deviations between the parameter estimates and the hypothesized values. The D1 
statistic uses the same procedure, so it is necessary to extend Rubin’s (1987) variance parti-
tioning formulas to multiple parameters. The basic logic of the pooling process remains the 
same, but covariance matrices quantify the within- and between-imputation variability.

With a single parameter, the within-imputation variance is the arithmetic average of the 
m sampling variances. In the multivariate context, the within-imputation covariance matrix 
is the average of the m parameter covariance matrices, as follows:

 1 VW = — ∑
m

t=1
var(#̂t) (8.17)

 m

where VW is the average within-imputation covariance matrix, and var(#̂t) is the parameter 
covariance matrix from data set t. Consistent with the single parameter case, VW estimates 
the parameter covariance matrix that would have resulted had the data been complete.

Filling in the data with different sets of imputed values causes the parameter estimates 
to vary across the m analyses, and this between-imputation variability is an important com-
ponent of the total sampling error. The between-imputation covariance matrix quantifi es 
this variation, as follows:

 1 VB = —–— ∑
m

t=1
(#̂t – #̄)(#̂t – #̄)T (8.18)

 m – 1

where VB is the between-imputation covariance matrix, #̂t contains the parameter estimates 
from data set t, and #̄ is the vector of pooled point estimates (i.e., the arithmetic average of 
the #̂t vectors). The diagonal elements of VB contain the between-imputation variance esti-
mates for individual parameters, and the off-diagonal elements quantify the extent to which 
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the between-imputation fl uctuation in one parameter is related to the between-imputation 
fl uctuation in another parameter. Considered as a whole, the between-imputation covariance 
matrix represents the additional sampling fl uctuation that results from the missing data.

Finally, the total parameter covariance matrix combines the within- and between- 
imputation covariance matrices, as follow:

 1 VT = VW + VB + — VB (8.19)
 m

The matrix VT refl ects the total sampling fl uctuation in a set of parameter estimates. Like the 
parameter covariance matrix from a maximum likelihood analysis, the diagonal elements of 
VT contain sampling variances, and the off-diagonals contain covariances between pairs of 
estimates.

An Alternate Estimate of the Total Covariance Matrix

The between-imputation covariance matrix in Equation 8.18 is prone to a great deal of sam-
pling error when the number of imputations is small, and this results in a poor estimate of 
the total parameter covariance matrix. Consequently, using the total covariance matrix in 
Equation 8.19 to construct a Wald-like test statistic can produce inaccurate inferences. Li, 
Raghunathan, and Rubin (1991) proposed a solution to this problem that requires an alter-
nate expression for the total covariance matrix.

 ṼT = (1 + ARIV)VW (8.20)

Earlier in the chapter, I introduced the relative increase in variance due to nonresponse. The 
ARIV term in the equation above estimates the average relative increase in variance across 
the k parameter estimates in #̄ and is defi ned by

 (1 + m–1)tr(VBVW
–1)

 ARIV = ———–————— (8.21)
 k

where tr denotes the trace operator (i.e., the sum of the diagonal elements).
To better understand ṼT, reconsider the total sampling variance for a single parameter. 

Applying some algebra to Equation 8.6 gives

 VT = (1 + RIV)VW (8.22)

where RIV is the relative increase in variance from Equation 8.10. Defi ning the total variance 
in this way makes it clear that ṼT is a matrix analog of VT, where the average relative increase 
in variance replaces RIV. Because ARIV condenses the information in the between-imputation 
covariance matrix into a single numeric value (i.e., ARIV), ṼT can provide a more stable esti-
mate of the total parameter covariance matrix.
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The D1 Statistic

Li, Raghunathan, et al. (1991) proposed the following test statistic:

 1 D1 = — (#̄ – #0)T(ṼT)–1(#̄ – #0) (8.23)
 k

where k is the number of parameters in #̄. Although D1 closely resembles the Wald test in 
Equation 8.16, its sampling distribution is far more complex. Li, Raghunathan, et al. suggest 
using an F distribution with k numerator degrees of freedom and ν2 denominator degrees of 
freedom to obtain a probability value, where

 2 1 ν2 = 4 + (km – k – 4)[1 + (1 – —–—–)—–—]2

 (8.24)
 km – k ARIV

In a situation where km – k is less than or equal to 4, they recommend an alternate expres-
sion for ν2, as follows.

 1 1 (km – k)(1 + —)(1 + —–—)2

 k ARIV ν2 = ———————————— (8.25)
 2

The D1 statistic uses a total parameter covariance matrix based on the average relative 
increase in variance. This formulation of the test statistics assumes that the relative increase 
in variance (or equivalently, the fraction of missing information) is the same for all parame-
ters (i.e., ARIV is representative of each parameter’s RIV value). This assumption is unlikely 
to hold in practice because it essentially requires that the analysis variables have the same 
missing data rates and the same correlations. Li, Raghunathan, et al. (1991) used Monte 
Carlo simulations to study the performance of the D1 statistic under a variety of different 
conditions. Their simulation results suggest that D1 has type I error rates close to the nomi-
nal 0.05 level, but it lacks power when the number of parameters is large or the number of 
imputations is small. For example, they show that an analysis that uses m = 4 imputations 
has approximately 10% less power than a hypothetical analysis based on an infi nite number 
of imputations. The authors only report power levels for m = 4 imputations, but it is reason-
able to expect power to improve as the number of imputations increases. As a fi nal note, the 
derivation of D1 assumes a very large sample size, but no research to date has investigated its 
performance in small to moderate samples. Consequently, it is diffi cult to assess the trust-
worthiness of the D1 statistic in realistic research scenarios.

An Analysis Example

To illustrate the D1 statistic, suppose that it is of interest to use the data in Table 8.1 to esti-
mate the regression of job performance on IQ and psychological well-being. After generating 
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20 imputations, I fi t an ordinary least squares regression model to each data set and saved 
the estimates and parameter covariance matrices to a fi le for further analysis. In a multiple 
regression analysis, researchers typically use an omnibus F test to determine whether two or 
more coeffi cients are signifi cantly different from zero, and the D1 statistic can serve a similar 
role in a multiple imputation analysis. Table 8.4 shows the parameter estimates and the pa-
rameter covariance matrices from the 20 analyses. Note that I excluded the regression inter-
cept and its covariance matrix elements from the table because the intercept is not part of the 
usual omnibus test. Consequently, the diagonal elements of each parameter covariance ma-
trix contain the sampling variances (i.e., squared standard errors), and the off-diagonal is the 
covariance between the two regression slopes.

To begin, averaging the 20 sets of regression coeffi cients gives the following vector of 
point estimates.

 
#̄ = [ β̄IQ ] = [.083] β̄WB .365

The interpretation of the regression coeffi cients is identical to that of a complete-data analy-
sis. For example, holding psychological well-being constant, a one-point increase in IQ is 
associated with a 0.083 increase in job performance ratings, on average.

Next, I computed the pooled parameter covariance matrix. Averaging the covariance ma-
trices in Table 8.4 yields the pooled within-imputation covariance matrix.

 
VW = [ .00159 –.00176] –.00176 .02708

Again, VW estimates the parameter covariance matrix that would have resulted had there been 
no missing data. Next, I used the m sets of regression coeffi cients and the corresponding 
pooled values to compute the between-imputation covariance matrix that quantifi es the ad-
ditional sampling fl uctuation that accrues from the missing data.

 
VB =

 [ .00689 –.01723] –.01723 .11446

Computing the total covariance matrix requires the average relative increase in variance. 
Substituting the previous estimates of VW and VB into Equation 8.21 gives ARIV = 4.042. 
This value suggests that the sampling variance due to the missing data is, on average, four 
times larger than the sampling variance that would have resulted had the data been complete. 
Next, substituting ARIV and VW into Equation 8.20 gives the total parameter covariance ma-
trix as follows:

 
ṼT =

 [ .00802 –.00889] –.00889 .13654
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Finally, substituting the parameter estimates and the total covariance matrix into Equa-
tion 8.23 yields D1 = 1.245, as follows:

 
D1 =  1—

2
 ([.083] – [0])T[ .00802 –.00889]–1([.083] – [0]) = 1.45

 .365 0 –.00889 .13654 .365 0

Referencing D1 against an F distribution with k = 2 and ν2 = 55.806 degrees of freedom re-
turns a probability value of p = .30. D1 is analogous to an omnibus F statistic, so the lack of 
signifi cance suggests that the pair of regression coeffi cients is not statistically different from 
zero (i.e., considered as a set, the explanatory variables do not predict job performance). 
Fortunately, the D1 statistic is available in a number of software programs, so performing the 
tedious matrix computations is rarely necessary.

8.12 TESTING MULTIPLE PARAMETERS BY COMBINING WALD TESTS

A second approach for conducting multiparameter signifi cance tests is to pool signifi cance 
tests from the analysis phase. Li, Meng, Raghunathan, and Rubin (1991) outlined a procedure 
for pooling Wald tests, which I henceforth refer to as the D2 statistic. To begin, D2 requires 
the arithmetic average of the m Wald tests, as follows:

 1 ω̄ = — ∑
m

t=1
ωt (8.26) m

where ωt is the Wald statistic from data set t and ω̄ is the mean test statistic. Similar to the 
D1 statistic, D2 also requires an estimate of the average relative increase in variance. Li, Meng, 
et al. (1991) provide an expression that relies only on the m Wald statistics

 1 ARIV1 = (1 + m–1)[—–— ∑
m

t=1
(√�ω� t  – √�ω� )2] (8.27)

 m – 1

where √�ω� t  is the square root of the Wald statistic from data set t, and √�ω�  is the average of 
the √�ω� t  values. (Collectively, the terms in brackets quantify the variance of the square root 
of the Wald statistics.) Although it does not resemble its previous counterpart, ARIV1 has the 
same interpretation as ARIV. Finally, the D2 statistic is as follows:

 ω̄k–1 – (m + 1)(m – 1)–1ARIV1 D2 = —————————–——— (8.28)
 1 + ARIV1

To generate a probability value, Li, Meng, et al. recommend an F reference distribution with 
k numerator degrees of freedom and ν3 denominator degrees of freedom, where

 1 ν3 = k–3/m(m – 1)(1 + ———)2

 (8.29)
 ARIV1
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The interpretation of D2 is similar to that of a complete-data Wald statistic. That is, a statisti-
cally signifi cant test statistic indicates that the parameter estimates differ from their hypoth-
esized values.

Li, Meng, et al. (1991) used Monte Carlo simulations to study the performance of D2 
statistic under a variety of conditions. Their results suggest that type I error rates can either 
be too high or too low, depending on the fraction of missing information (e.g., when the frac-
tion of missing information was less than 20%, type I errors dropped below the nominal 
0.05 level). Their simulations also indicate that D2 has lower power than D1. Considered as 
a whole, these simulation results suggest that D2 does not yield accurate inferences, and the 
authors recommend using the procedure “primarily as a screening test statistic” (p. 83). You 
should use the D1 statistic whenever possible, but a custom program for computing D2 is 
available on the companion website, if necessary.

8.13 TESTING MULTIPLE PARAMETERS BY COMBINING LIKELIHOOD 
RATIO STATISTICS

A fi nal option for conducting multiparameter signifi cance tests is to combine likelihood ratio 
test statistics from the analysis phase. Meng and Rubin (1992) outline such a procedure, and 
I subsequently refer to their test statistic as D3. As a brief reminder, recall that the likelihood 
ratio statistic uses the log-likelihood value to compare the relative fi t of two nested models, 
as follows:

 LR = –2(logLRestricted – logLFull) (8.30)

where logLFull and logLRestricted are the log-likelihood values from the full and the restricted 
models, respectively. The restricted model may include a subset of the parameters from the 
full model (e.g., a regression model where the slopes are constrained to zero during estima-
tion), or it can differ from the full model by a set of complex parameter constraints (e.g., a 
confi rmatory factor analysis model is a restricted model that expresses the population covari-
ance matrix as a function of the factor model parameters).

To begin, the D3 requires the average likelihood ratio test from the analysis phase, as 
follows:

 1 LR = —∑
m

t=1
LRt (8.31) m

where LR is the arithmetic average of the m likelihood ratio statistics, and LRt is the likeli-
hood ratio test from data set t. The computations also require the pooled parameter estimates 
from both models. I denote these parameter vectors as #̄F and #̄R for the full and the restricted 
models, respectively.

After pooling the test statistics and the parameter estimates, the next step is to re-estimate 
the full and the restricted models, this time constraining the model parameters to their pooled 
values (i.e., estimate the full model m times, each time fi xing the model parameters to the 
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values in #̄F). Estimating the models with parameter constraints yields a second set of m 
likelihood ratio tests that compare the relative fi t of the constrained models. The purpose of 
this step is to obtain the arithmetic average of these likelihood ratio tests (e.g., by substitut-
ing the LR values into Equation 8.31). I denote this average as LRConstrained in order to differ-
entiate it from LR.

Finally, the D3 test statistic is as follows:

 LRConstrained D3 = —————– (8.32)
 k(1 + ARIV2)

where ARIV2 is yet another estimate of the average relative increase in variance.

 m + 1 ARIV2 = ————(LR – LRConstrained) (8.33)
 k(m – 1)

To obtain a probability value for D3, Meng and Rubin recommend an F reference distribution 
with k numerator degrees of freedom and ν4 denominator degrees of freedom. In this context, 
k is the number of parameter constraints (i.e., the degrees of freedom for the complete-data 
likelihood ratio test), and ν4 is

 2 1 ν4 = 4 + (km – k – 4)[1 + (1 – —–—–)—–—]2

 (8.34)
 km – k ARIV2

In the situation where km - k is less than or equal to four, Meng and Rubin recommend an 
alternate expression for ν4, as follows.

 1 (km – k) (1 + k–1) (1 + —––—)2

 ARIV3 ν4 = ————————————— (8.35)
 2

Meng and Rubin show that D3 is asymptotically equivalent to D1, so the two tests should 
yield similar conclusions in large samples. However, because virtually no research studies 
have compared the two test statistics, it is diffi cult to assess their relative performance in re-
alistic research scenarios. All things being equal, D1 is more convenient because it is readily 
available in a number of popular software programs. However, D3 is potentially useful in 
structural equation modeling analyses because it provides a mechanism for assessing model 
fi t (e.g., by pooling the chi-square tests of model fi t). In the structural equation modeling 
context, the full model is a saturated model (e.g., a model that estimates the sample covari-
ance matrix), and the restricted model is the hypothesized model (e.g., a confi rmatory factor 
analysis model that expresses the population covariance matrix as a function of the factor 
model parameters). The so-called chi-square test of model fi t is a likelihood ratio test that 
compares the relative fi t of these two models. Methodologists have yet to develop procedures 
for pooling structural equation modeling fi t indices (e.g., the CFI, RMSEA), so the D3 statistic 
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is currently the only formal option for assessing fi t. I illustrate the use of D3 for this purpose 
in one of the subsequent data analysis examples.

8.14 DATA ANALYSIS EXAMPLE 1

In the remainder of the chapter, I use three data analysis examples to illustrate various as-
pects of a multiple imputation analysis. Chapter 7 did not include data analysis examples, so 
the subsequent examples illustrate all three phases of a multiple imputation analysis. To fa-
cilitate comparisons between maximum likelihood estimation and multiple imputation, the 
analysis examples are identical to those from Chapter 4.

The fi rst analysis example illustrates the use of multiple imputation to estimate a mean 
vector, covariance matrix, and a correlation matrix.* The data for this analysis are made up of 
scores from 480 employees on eight work-related variables: gender, age, job tenure, IQ, psy-
chological well-being, job satisfaction, job performance, and turnover intentions. I generated 
these data to mimic the correlation structure of published research articles in the manage-
ment and psychology literature (e.g., Wright & Bonett, 2007; Wright, Cropanzano, & Bonett, 
2007). The data have three missing data patterns, each of which is comprised of one- third of 
the sample. The fi rst pattern consists of cases with complete data, and the remaining two pat-
terns have missing data on either well-being or job satisfaction. These patterns mimic a situ-
ation in which the data are missing by design (e.g., to reduce the cost of data collection).

The Imputation Phase

First, I used the EM algorithm to estimate the mean vector and the covariance matrix. EM 
converged in only 20 iterations, which suggests that the data augmentation algorithm should 
also converge very quickly. Next, I generated an exploratory chain of 5,000 data augmenta-
tion cycles and saved the simulated parameter values from each P-step. The purpose of this 
initial analysis was to assess the convergence of the data augmentation algorithm, and I did 
so by examining time-series and autocorrelation function plots for each element in the mean 
vector and the covariance matrix.

To illustrate the convergence diagnostics, Figure 8.2 shows the times-series and autocor-
relation function plots for the simulated covariance between well-being and job satisfaction. 
I paid particularly close attention to the convergence behavior of this parameter because it 
has the highest percentage of missing data, and thus one of the highest fractions of missing 
information (only 33% of the cases have data on both variables). The time-series plot in the 
top panel of Figure 8.2 suggests that the covariances randomly vary, with no discernible long-
term trends. In fact, the upward and downward trends in the plot typically last for fewer than 
20 iterations. The autocorrelation plot in the bottom panel of the fi gure also shows very fast 
convergence, as the autocorrelations drop to chance levels by lag 10 (i.e., the correlation 
between parameter values separated by 10 iterations is not signifi cantly different from zero). 
I examined the plots for the remaining parameters, and they were largely consistent with 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com. 
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those in Figure 8.2. Taken together, the graphical diagnostics suggest that the data augmen-
tation algorithm converges very quickly, perhaps in fewer than 20 iterations. The fast conver-
gence may seem somewhat surprising given that such a large proportion of the well-being 
and job satisfaction scores were missing. However, this example is an ideal situation because 
the data are MCAR by design.

As a general rule, it is a good idea to assess convergence using a small number of alter-
nate starting values (e.g., bootstrap estimates of ! and "). However, the graphical displays 
were so ideal that this additional step did not seem necessary. Consequently, I generated the 
fi nal imputations using a single data augmentation chain. The graphical diagnostics suggest 
that the data augmentation algorithm converges in fewer than 20 iterations, but I took a 
conservative tack of specifying 100 burn-in and 100 between-imputation iterations (i.e., I 
saved the fi rst imputed data set after an initial burn-in period of 100 cycles and saved subse-
quent data sets at every 100th I-step thereafter). The exploratory data augmentation chain 
took just a few seconds to run, so I opted to generate m = 50 imputations for the analysis 
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FIGURE 8.2. Time-series plots for the covariance between psychological well-being (WB) and job 
satisfaction (JS). The top panel shows a time-series plot with no long-term trends. The bottom panel 
shows autocorrelations that drop to within sampling error of zero after 10 data augmentation cycles.
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phase. Estimating means and correlations from 50 data sets takes very little time, so using a 
large number of imputations posed no practical problems.

The Analysis Phase

I analyzed each of the 50 data sets in the analysis phase. This step produced an estimate of 
the mean vector, the covariance matrix, and the correlation matrix from each of the 50 fi lled-
in data sets. Although it sounds tedious to repeat the analysis that many times, many soft-
ware programs automate the process. As an aside, programs that automate the analysis phase 
have different formatting requirements for the imputed data fi les. For example, some software 
packages make it very easy to analyze a data set where the imputations are stacked in a single 
fi le, whereas other programs require separate data sets. The companion website has software 
examples that illustrate both approaches.

The Pooling Phase

In the pooling phase, I used Rubin’s (1987) formulas to combine the parameter estimates. 
Although some of the parameters are unlikely to satisfy the normality requirement (e.g., vari-
ances and covariances), I averaged the variable means and the covariance matrix elements 
without applying any transformations. Fisher’s (1915) z transformation is a natural choice 
for the pooling correlations because it transforms the estimates to a metric that more closely 
approximates a normal distribution, and it provides a straightforward mechanism for per-
forming signifi cance tests. Equation 8.2 gives the transformation, and the corresponding stan-
dard error is as follows:

 1 SEt = ——— (8.36)
 √�N� �–� 3

After pooling the transformed estimates and their standard errors, I used Equation 8.3 to 
back-transform the average coeffi cients to the correlation metric.

Table 8.5 shows the pooled point estimates along with the corresponding maximum 
likelihood estimates from Chapter 4. As seen in the table, the multiple imputation and maxi-
mum likelihood estimates are quite similar. The close correspondence of the two sets of esti-
mates is not surprising given that both techniques make the same assumptions (MAR data 
and multivariate normality) and use the same set of input variables. You might have noticed 
that maximum likelihood estimates of variances and covariances are slightly smaller than 
those of multiple imputation, even for the variables that have complete data (e.g., the age 
variance estimates are 29.968 and 28.908 for multiple imputation and maximum likelihood, 
respectively). These systematic (albeit small) differences result from the fact that maximum 
likelihood estimates use N in the denominator rather than N – 1.
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8.15 DATA ANALYSIS EXAMPLE 2

The second analysis example applies multiple imputation to a multiple regression model.* 
The analysis uses the same employee data set as the fi rst example and involves the regression 
of job performance ratings on psychological well-being and job satisfaction, as follows:

 JPi = β0 + β1(WBi) + β2(SATi) + ε

I reused the 50 imputations from the previous example for this analysis. Carefully plan-
ning the imputation model allows you to use the same imputed data sets for many (if not all) 
of the subsequent analyses. At a minimum, the imputation phase must include all of the as-
sociations that are of interest in the subsequent analysis phase. I imputed the data using all 
eight variables in the data set, so I can perform any analysis that involves the zero-order as-
sociations among the variables. I would only need to generate a new set of imputations if my 
analysis model included higher-order terms (e.g., interactions) or other variables that I ex-
cluded from the imputation phase.

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 8.5. Mean, Covariance, and Correlation Estimates from Data Analysis 
Example 1

Variable 1 2 3 4 5 6 7 8

Multiple imputation

1: Age 28.968 0.504 –0.010 .181 0.139 –0.049 –0.150 0.015
2: Tenure 8.477 9.755 –0.034 .156 0.153 0.016 0.011 0.001
3: Female –0.028 –0.052 0.249 .113 0.038 –0.015 0.005 0.068
4: Well-being 1.147 0.576 0.066 1.395 0.321 0.456 –0.255 0.293
5: Satisfaction 0.888 0.567 0.023 0.449 1.406 0.184 –0.234 0.407
6: Performance –0.331 0.061 –0.009 0.675 0.274 1.574 –.346 0.426
7: Turnover –0.378 0.016 0.001 –0.141 –0.129 –0.203 0.218 –0.180
8: IQ 0.675 0.026 0.285 2.912 4.063 4.505 –0.707 71.040
Means 37.948 10.054 0.542 6.291 5.946 6.021 0.321 100.102

Maximum likelihood

1: Age 28.908 0.504 –0.010 0.182 0.136 –0.049 –0.150 0.015
2: Tenure 8.459 9.735 –0.034 0.155 0.154 0.016 0.011 0.001
3: Female –0.028 –0.052 0.248 0.115 0.047 –0.015 0.005 0.068
4: Well-being 1.148 0.569 0.067 1.382 0.322 0.456 –0.257 0.291
5: Satisfaction 0.861 0.565 0.028 0.446 1.386 0.184 –0.234 0.411
6: Performance –0.330 0.061 –0.009 0.671 0.271 1.570 –0.346 0.426
7: Turnover –0.377 0.016 0.001 –0.141 –0.129 –0.203 0.218 –0.180
8: IQ 0.674 0.026 0.284 2.876 4.074 4.496 –0.706 70.892
Means 37.948 10.054 0.542 6.288 5.950 6.021 0.321 100.102

Note. Correlations are shown in the upper diagonal in bold typeface. Elements affected by missing data are en-
closed in the shaded box.
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The Analysis and Pooling Phases

In the analysis phase, I estimated the regression model parameters separately for each of the 
50 fi lled-in data sets. The imputation phase incorporated a number of extra variables that 
were not part of the regression analysis (i.e., age, job tenure, gender, IQ), so these additional 
variables effectively served as auxiliary variables. It is important to reiterate that auxiliary 
variables play no role in the analysis phase (the fi lled-in values already contain the auxiliary 
information), so I did not include the extra variables in the regression model.

In a multiple regression analysis, researchers typically use an omnibus F test to deter-
mine whether two or more coeffi cients are statistically different from zero. Of the three multi-
parameter signifi cance tests outlined previously in the chapter, the D1 statistic is particularly 
convenient because it is readily available in multiple imputation software programs. Conse-
quently, I used D1 to assess whether the two regression slopes were different from zero. This 
procedure produced a test statistic of D1 = 42.87, and referencing this value against an F 
distribution with k = 2 and ν2 = 899.07 degrees of freedom returned a probability value of 
p < .001. The substantive interpretation of D1 is identical to that of an omnibus F statistic, 
so rejecting the null hypothesis implies that at least one of the regression coeffi cients is sig-
nifi cantly different from zero.

As an aside, the D1 statistic assumes that the fractions of missing information are iden-
tical across parameters. Multiple imputation software programs generally report these quan-
tities, and the estimates from this analysis are 0.27 and 0.39 for the well-being and job satis-
faction slopes, respectively. Recall that missing information is akin to an R2 statistic, such 
that a value of 0.27 indicates that 27% of the well-being slope’s sampling variance (i.e., 
squared standard error) is attributable to missing data. Although the fractions of missing 
information are not identical, the magnitude of this difference is probably not large enough 
to seriously distort the D1 statistic (Li, Raghunathan, et al., 1991). I could have also used the 
D2 or D3 statistics to test the regression coeffi cients, but D1 is far easier to implement.

Researchers typically follow up a signifi cant omnibus test by examining the partial re-
gression coeffi cients. Table 8.6 gives the regression model estimates along with the saturated 
correlates model estimates from Chapter 5. As seen in the table, psychological well-being was 
a signifi cant predictor of job performance, β̂1 = 0.470, t(231.01) = 8.79, p < .001, but job 
satisfaction was not, β̂2 = 0.045, t(154.84) = 0.77, p = .44. The interpretation of these regres-
sion coeffi cients is the same as an ordinary least squares analysis. For example, holding job 
satisfaction constant, a one-point increase in psychological well-being yields a .470 increase 
in job performance ratings, on average. Note that I used Barnard and Rubin’s (1999) degrees 
of freedom for the t tests. This degrees of freedom expression relies, in part, on the degrees 
of freedom for a complete-data test statistic (e.g., dfcom = N – k – 1 = 477, where k is the 
number of predictors). I point this out because some multiple imputation software programs 
require the user to specify the complete-data degrees of freedom value when requesting Bar-
nard and Rubin’s formula.

Finally, notice that multiple imputation and maximum likelihood produced very similar 
parameter estimates and standard errors. In this particular example, the two missing data 
handling approaches are not exactly comparable because the saturated correlates model in 
Chapter 5 included only IQ and turnover intentions as auxiliary variables. Nevertheless, the 
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estimates are quite similar, even though the multiple imputation analysis used a larger set of 
auxiliary variables.

8.16 DATA ANALYSIS EXAMPLE 3

The fi nal data analysis example applies multiple imputation to a confi rmatory factor analysis 
model.* The analyses use artifi cial data from a questionnaire on eating disorder risk. Briefl y, 
the data contain the responses from 400 college-age women on 10 questions from the Eating 
Attitudes Test (EAT; Garner, Olmsted, Bohr, & Garfi nkel, 1982), a widely used measure of 
eating disorder risk. The 10 questions measure two constructs: Drive for Thinness (e.g., “I 
avoid eating when I’m hungry”) and Food Preoccupation (e.g., “I fi nd myself preoccupied 
with food”), and mimic the two-factor structure proposed by Doninger, Enders, and Burnett 
(2005). The 10 questionnaire items combine to measure two constructs. The Drive for Thin-
ness scale consists of seven items (EAT1, EAT2, EAT10, EAT11, EAT12, EAT14, and EAT24), and 
the Food Preoccupation scale has three items (EAT3, EAT18, and EAT21). Figure 4.2 shows a 
graphic of the EAT factor structure and abbreviated descriptions of the item stems. The data 
set also contains an anxiety scale score, a variable that measures beliefs about Western stan-
dards of beauty (e.g., high scores indicate that respondents internalize a thin ideal of beauty), 
and body mass index (BMI) values.

Variables in the EAT data set are missing for a variety of reasons. I simulated MCAR data 
by randomly deleting scores from the anxiety variable, the Western standards of beauty scale, 
and two of the EAT questions (EAT2 and EAT21). It seems reasonable to expect a relationship 
between body weight and missingness, so I created MAR data on fi ve variables (EAT1, EAT10, 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 8.6. Regression Model Estimates from Data 
Analysis Example 2

Parameter Estimate SE t

Multiple imputation

β0 (intercept) 6.021 0.060 118.096
β1 (well-being) 0.470 0.053 8.791
β2 (satisfaction) 0.045 0.058 0.772
R2 .208    

Maximum likelihood

β0 (intercept) 6.020 0.053 114.642
β1 (well-being) 0.475 0.054 8.798
β2 (satisfaction) 0.035 0.058 0.605
R2 .208    

Note. Predictors were centered at the maximum likelihood estimates of 
the mean.
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EAT12, EAT18, and EAT24) by deleting th  e EAT scores for a subset of cases in both tails of the 
BMI distribution. These same EAT questions were also missing for individuals with elevated 
anxiety scores. Finally, I introduced a small amount of MNAR data by deleting a number of 
the high body mass index scores (e.g., to mimic a situation where females with high BMI 
values refuse to be weighed). The deletion process typically produced a missing data rate of 
5 to 10% on each variable.

The Imputation Phase

To get a rough gauge of convergence speed, I fi rst used the EM algorithm to estimate the 
mean vector and the covariance matrix for the entire set of 13 variables (the 10 EAT items, 
body mass index, anxiety, and Western standard of beauty). EM converged in only nine itera-
tions, which suggests that data augmentation should also converge very quickly. Next, I 
generated an exploratory chain of 5,000 data augmentation cycles and saved the simulated 
parameter estimates from each P-step. The purpose of this initial analysis was to assess the 
convergence of the data augmentation algorithm, and I did so by examining time-series and 
autocorrelation function plots for each simulated parameter value in the mean vector and the 
covariance matrix. For the sake of brevity, I illustrate these plots using the covariance between 
EAT1 and EAT18. I chose this parameter because it has one of the highest fractions of missing 
information (i.e., this pair of variables has one of the highest missing data rates and the low-
est correlations). The fraction of missing information largely dictates convergence speed, so 
this parameter should be among the slowest to converge.

Figure 8.3 shows the time-series and autocorrelation function plots for the covariance 
between EAT1 and EAT18. The time-series plot in the top panel of Figure 8.3 suggests that the 
simulated covariance values randomly vary with no discernible trends whatsoever. The auto-
correlation plot in the bottom panel shows that the autocorrelations drop to chance levels 
by the second lag (i.e., the correlation between parameter values separated by two iterations 
is not signifi cantly different from zero). Thus, this parameter appears to converge almost 
immediately. I examined the plots for the remaining parameters, and they were largely con-
sistent with those in Figure 8.3. Taken together, the graphical diagnostics indicate that the 
data augmentation algorithm converges very quickly, perhaps in fewer than 10 iterations. 
The rather fast convergence follows from the fact that the fractions of missing information 
were generally rather low (e.g., values between 2 and 10% were common).

Having established the convergence of the data augmentation algorithm, I used a single 
data augmentation chain to generate the imputations. Although the data augmentation algo-
rithm appears to converge in fewer than 10 iterations, I took a conservative approach and 
specifi ed 100 burn-in iterations and 100 between-imputation iterations (i.e., i.e., I saved the 
fi rst imputed data set after an initial burn-in period of 100 cycles and saved subsequent data 
sets at every 100th I-step thereafter). For this analysis, I created m = 100 imputations for the 
analysis phase. Because a confi rmatory factor analysis model takes very little time to esti-
mate, using a large number of imputations does not pose a computational burden. Analyzing 
a large number of data sets is also useful for assessing model fi t (more on this later). Finally, 
note that I used the entire set of 13 variables in the imputation phase. The factor analysis 
model includes the 10 questionnaire items, so the additional variables (body mass index, 



 Analysis and Pooling Phases of Multiple Imputation 249

anxiety, and Western standards of beauty) effectively served as auxiliary variables. Again, there 
is no need to use the auxiliary variables in the subsequent analysis phase.

The Analysis and Pooling Phases

In the analysis phase, I estimated the factor model parameters separately for each of the 100 
fi lled-in data sets. The discrete nature of the questionnaire items violates the multivariate 
normality assumption, so I used robust (i.e., sandwich estimator) standard errors for each 
analysis (see Chapter 5). The analysis step produced 100 sets of results, and I subsequently 
used Rubin’s (1987) formulas to combine the parameter estimates and the standard errors 
(pooling robust standard errors is no different from pooling normal-theory standard errors). 
Although some of the parameters are unlikely to satisfy the normality requirement (e.g., factor 
variances, residual variances), I averaged the estimates without applying any transformations. 
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FIGURE 8.3. Time-series plots for the covariance between questions 1 and 18 from the EAT ques-
tionnaire (EAT1 and EAT18, respectively). The top panel shows a time-series plot with no long-term 
trends. The bottom panel shows autocorrelations that drop to within sampling error of zero by the 
second data augmentation cycle.
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Repeating the factor analysis 100 times sounds incredibly tedious, but some structural equa-
tion modeling software programs can fully automate the analysis and pooling phases. In fact, 
estimating the models and combining the results took less than 10 seconds on a laptop 
computer.

Table 8.7 shows selected parameter estimates and standard errors, along with the cor-
responding maximum likelihood estimates. To maximize the comparability of the two sets of 
results, the table gives the saturated correlates estimates from Chapter 5. As seen in the table, 
multiple imputation and maximum likelihood produced nearly identical estimates and stan-
dard errors. Again, this is not a surprise because the two procedures used the same set of 
variables (i.e., the saturated correlates model included the same 13 variables that I used in 
the imputation phase). Consistent with the previous analyses, the interpretation of the model 
parameters is unaffected by the missing data handling procedure. For example, the factor load-
ings estimate the expected change in the questionnaire items for a one-standard-deviation 
increase in the latent construct. This interpretation follows from the fact that I fi xed the vari-
ances of the latent variables to unity in order to identify the model.

Assessing model fi t is an important part of a structural equation modeling analysis. Ear-
lier in the chapter, I outlined a D3 statistic that combines likelihood ratio tests from a mul-

TABLE 8.7. Confi rmatory Factor Analysis Estimates from Data Analysis Example 3

 Loadings Intercepts Residuals

Variable Estimate SE Estimate SE Estimate SE

Multiple imputation

EAT1 0.743 0.049 4.006 0.055 0.606 0.067
EAT2 0.651 0.050 3.937 0.050 0.536 0.053
EAT10 0.808 0.052 3.955 0.050 0.331 0.038
EAT11 0.765 0.049 3.937 0.047 0.299 0.027
EAT12 0.665 0.054 3.929 0.051 0.540 0.057
EAT14 0.900 0.048 3.962 0.051 0.237 0.028
EAT24 0.625 0.053 3.985 0.051 0.604 0.050
EAT3 0.774 0.052 3.967 0.050 0.413 0.043
EAT18 0.749 0.055 3.982 0.052 0.456 0.049
EAT21 0.859 0.052 3.950 0.051 0.270 0.043

Maximum likelihood

EAT1 0.741 0.049 4.004 0.055 0.604 0.069
EAT2 0.649 0.050 3.937 0.050 0.535 0.054
EAT10 0.808 0.052 3.953 0.050 0.328 0.039
EAT11 0.764 0.049 3.938 0.047 0.300 0.027
EAT12 0.662 0.055 3.929 0.051 0.538 0.058
EAT14 0.901 0.047 3.963 0.051 0.234 0.028
EAT24 0.622 0.053 3.986 0.051 0.599 0.049
EAT3 0.772 0.052 3.967 0.050 0.415 0.042
EAT18 0.751 0.056 3.982 0.052 0.451 0.050
EAT21 0.862 0.053 3.952 0.051 0.264 0.043
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tiple imputation analysis (Meng & Rubin, 1992). This procedure is potentially useful for struc-
tural equation modeling analyses because it provides a mechanism for assessing model fi t 
(e.g., by pooling the chi-square test of model fi t). In the context of a confi rmatory factor 
analysis, the saturated model serves as the full model, and the hypothesized factor model is 
the restricted model. The so-called chi-square test of model fi t is a likelihood ratio test that 
compares the relative fi t of these two models.

To illustrate the D3 statistic, I fi t the confi rmatory factor model and the saturated model 
to each imputed data set and saved the resulting likelihood ratio tests. This step is straight-
forward because structural equation modeling programs report the likelihood ratio (i.e., chi-
square) test as standard output. Averaging the likelihood ratio tests produced LR = 61.94. In 
the next step, I re-estimated the two models after constraining the parameters to their pooled 
values. For example, I estimated the two-factor model on each imputed data set, but did so 
by constraining the factor model parameters to the pooled estimates in Table 8.7. I applied 
the same procedure to the saturated model. Estimating the constrained models produced 
another set of 100 likelihood ratio tests, the average of which was LRConstrained = 56.93. The 
D3 statistic requires the average relative increase in variance, and substituting the appropriate 
quantities into Equation 8.33 gives ARIV2 = 0.15. (The factor model has 34 fewer parameters 
than the saturated model, so k = 34.) Finally, substituting the appropriate values into Equa-
tion 8.32, a test statistic of D3 = 1.456, and referencing this value to an F distribution with 
k = 34 and ν4 = 197,410.74 degrees of freedom gives a probability value of p = .04. Because 
the substantive interpretation of D3 is identical to that of the likelihood ratio test, rejecting 
the null hypothesis implies that the factor model does not fi t the data as well as the saturated 
model. For comparison purposes, the saturated correlates model from Chapter 5 produced 
a likelihood ratio test of χ2(34) = 49.04, p = .05. Although the two analyses produced very 
similar conclusions about model fi t in this particular example, no studies have examined the 
performance of D3 in structural equation modeling applications. Until more research accu-
mulates, it seems prudent to interpret D3 with some caution.

Researchers generally augment the likelihood ratio test with a number of other fi t indices. 
The methodological literature currently favors the CFI, RMSEA, and the SRMR (Hu & Bentler, 
1998, 1999), but there is no established method for pooling these indices. In order to get 
some sense about model fi t, I used the 100 estimates of each index to construct an empirical 
distribution. The distributions were approximately normal and had means of 0.987 (CFI), 
0.041 (RMSEA), and 0.031 (SRMR). I arbitrarily examined the 5th and the 95th percentiles 
of each index, and these values were as follows: CFI (P5 = 0.981, P95 = 0.993), RMSEA (P5 = 
0.032, P95 = 0.050), and SRMR (P5 = 0.028, P95 = 0.034). High CFI values are indicative of 
good model fi t, so the CFI value at the 5th percentile of the distribution should provide a 
conservative assessment of fi t. In contrast, lower values of the RMSEA and SRMR are indica-
tive of good fi t, so the values at the 95th percentile of these distributions would be conserva-
tive. Considered as a whole, the means and the percentiles of the distributions suggest that 
the two-factor model fi ts the data adequately (e.g., the values at the mean and the 5th per-
centile of the CFI distribution exceed the conventional cutoff of 0.95). The approach out-
lined here is purely ad hoc and has no theoretical rationale. Until methodologists develop 
formal pooling rules for popular fi t indices, this is probably the best you can do.
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8.17 SUMMARY

A multiple imputation analysis consists of three distinct steps: the imputation phase, the 
analysis phase, and the pooling phase. The product of the imputation phase is a set of fi lled-
in data sets, each of which contains different estimates of the missing values. The purpose of 
the analysis phase is to analyze the fi lled-in data sets from the preceding imputation phase. 
This step consists of m statistical analyses, one for each imputed data set. The analysis phase 
yields several sets of parameter estimates and standard errors, so the goal of the pooling 
phase is to combine everything into a single set of results. Rubin (1987) outlined relatively 
straightforward formulas for pooling parameter estimates and standard errors. The pooled 
parameter estimate is simply the arithmetic average of the estimates from the analysis phase. 
Combining standard errors is somewhat more complex because it involves two sources of 
sampling variation. The within-imputation variance is the arithmetic average of the m sam-
pling variances (i.e., squared standard errors), and the between-imputation variance quanti-
fi es the variability of an estimate across the m imputations. The within-imputation variance 
estimates the sampling fl uctuation that would have resulted had there been no missing data, 
and the between-imputation variance captures the increase in sampling error due to missing 
data. Together, these two sources of variation combine to form the total sampling variance, 
the square root of which is the standard error.

The chapter outlined four signifi cance testing procedures. The familiar t statistic (the 
pooled estimate divided by its standard errors) is useful for testing whether a single estimate 
is different from some hypothesized value. Multiple imputation also offers different mecha-
nisms for testing a set of parameter estimates. The D1 statistic uses pooled parameter esti-
mates and pooled parameter covariance matrices to construct a test that closely resembles 
the multivariate Wald statistic. A second approach is to compute a signifi cance test for each 
imputed data set and pool the resulting test statistics. The D2 statistic pools Wald tests from 
the analysis phase, and the D3 statistic pools likelihood ratio tests. Although these proce-
dures accomplish the same task, they are not equally trustworthy, nor are they equally easy 
to implement. Relatively little is known about the performance of the multiparameter signifi -
cance tests, but it is clear that D1 and D3 are preferable to D2.

Chapter 9 outlines a number of practical issues that arise during the imputation phase 
of a multiple imputation analysis. Specifi cally, the chapter offers advice on dealing with con-
vergence problems, non-normal data (including nominal and ordinal variables), interaction 
effects, and large multiple-item questionnaire data sets. The chapter also provides a brief over-
view of some alternative imputation algorithms that are appropriate for special types of data 
structures (e.g., mixtures of categorical and continuous variables, multilevel data).
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